A Personal Classification Method Using Spatial Information of Multi-channel EEG

نویسندگان

  • Yu Ishikawa
  • Chinami Yoshida
  • Masami Takata
  • Hiroyasu Kamo
  • Kazuki Joe
چکیده

Biometric authentication using various biological information is studied by many researchers. We study a feature extraction method available for personal authentication by focusing on EEG in the biological information. In addition, since electroencephalograph technology has advanced significantly in recent years, multichannel EEG is possible to be relatively easily measured. Therefore, in this paper, as EEG features, we propose a method using a cross-correlation between electrodes obtained from the multi-channel electroencephalograph. In validations, a feature combination, which is obtained from the proposed method and time-frequency analysis, is used. A personal classification is performed by applying SVM to obtained features. Moreover, by detailed validations about the proposed method, we evaluate the possibility of the crosscorrelation between electrodes as features for the personal authentication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

Optimizing Eeg Channel Selection by Regularized Spatial Filtering and Multi Band Signal Decomposition

Appropriate choice of number of electrodes and their positions are essential in Brain-Computer Interface applications since using less electrodes collects insufficient information for classification purposes whereas using more collects redundant information that could degrade BCI performance. This paper proposes a novel method of optimizing EEG channel selection by using the regularized Common ...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015